Orthonormal Wavelets and Tight Frames with Arbitrary Real Dilations
نویسندگان
چکیده
منابع مشابه
Orthonormal Dilations of Non-tight Frames
We establish dilation theorems for non-tight frames with additional structure, i.e., frames generated by unitary groups of operators and projective unitary representations. This generalizes previous dilation results for Parseval frames due to Han and Larson [6] and Gabardo and Han [5]. We also extend the dilation theorem for Parseval wavelets, due to Dutkay, Han, Picioroaga, and Sun [4], by ide...
متن کاملOrthonormal Dilations of Parseval Wavelets
We prove that any Parseval wavelet frame is the projection of an orthonormal wavelet basis for a representation of the Baumslag-Solitar group BS(1, 2) = 〈u, t | utu = t〉. We give a precise description of this representation in some special cases, and show that for wavelet sets, it is related to symbolic dynamics (Theorem 3.14). We show that the structure of the representation depends on the ana...
متن کاملCompleteness of Orthonormal Wavelet Systems, for Arbitrary Real Dilations
It is shown that the discrete Calderón condition characterizes completeness of orthonormal wavelet systems, for arbitrary real dilations. That is, if a > 1, b > 0, and the system Ψ = {aψ(ax − bk) : j, k ∈ Z} is orthonormal in L(R), then Ψ is a basis for L(R) if and only if ∑ j∈Z |ψ̂(aξ)| = b for almost every ξ ∈ R. A new proof of the Second Oversampling Theorem is found, by similar methods.
متن کاملCompactly Supported Tight Wavelet Frames and Orthonormal Wavelets of Exponential Decay with a General Dilation Matrix
Tight wavelet frames and orthonormal wavelet bases with a general dilation matrix have applications in many areas. In this paper, for any d × d dilation matrix M , we demonstrate in a constructive way that we can construct compactly supported tight M -wavelet frames and orthonormal M -wavelet bases in L2(R) of exponential decay, which are derived from compactly supported M -refinable functions,...
متن کامل2 Building tight frames from orthonormal bases
We present an interesting result regarding the implication of truncating the wavepacket of the harmonic oscillator. We show that disregarding the non-significant tails of a function which is the superposition of eigenfunctions of the harmonic oscillator has a remarkable consequence. Namely, there exit infinitely many different superpositions giving rise to the same function on the interval. Uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2000
ISSN: 1063-5203
DOI: 10.1006/acha.2000.0316